

PROGRAMMING LOG IC

AND DES IGN

COMPREHENSIVE VERSION

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PROGRAMMING LOGIC

AND DESIGN

COMPREHENSIVE VERSION

JOYCE FARRELL

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

SEV ENTH ED I T I ON

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

Programming Logic and Design,

Comprehensive version,
Seventh Edition
Joyce Farrell

Executive Editor: Marie Lee

Acquisitions Editor: Brandi Shailer

Senior Product Manager: Alyssa Pratt

Developmental Editor: Dan Seiter

Senior Content Project Manager:
Catherine DiMassa

Associate Product Manager:
Stephanie Lorenz

Associate Marketing Manager:
Shanna Shelton

Art Director: Faith Brosnan

Text Designer: Shawn Girsberger

Cover Designer: Lisa Kuhn/Curio Press,
LLC, www.curiopress.com

Image Credit: © Leigh Prather/Veer

Senior Print Buyer: Julio Esperas

Copy Editor: Michael Beckett

Proofreader: Kim Kosmatka

Indexer: Alexandra Nickerson

Compositor: Integra

© 2013 Course Technology, Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein
may be reproduced, transmitted, stored or used in any form or by any means—
graphic, electronic, or mechanical, including but not limited to photocopying,
recording, scanning, digitizing, taping, Web distribution, information networks,
or information storage and retrieval systems, except as permitted under Section
107 or 108 of the 1976 United States Copyright Act—without the prior written
permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, www.cengage.com/support.

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions.

Further permissions questions can be emailed to
permissionrequest@cengage.com.

Library of Congress Control Number: 2012930593

ISBN-13: 978-1-111-96975-2

Course Technology
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions with
office locations around the globe, including Singapore, the United Kingdom,
Australia, Mexico, Brazil, and Japan. Locate your local office at:
www.cengage.com/global

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

To learn more about Course Technology, visit
www.cengage.com/coursetechnology.

Purchase any of our products at your local college store or at our preferred
online store: www.cengagebrain.com

Some of the product names and company names used in this book have been
used for identification purposes only and may be trademarks or registered
trademarks of their respective manufacturers and sellers.

Unless otherwise credited, all art © Cengage Learning, produced by Integra.

Course Technology, a part of Cengage Learning, reserves the right to revise this
publication and make changes from time to time in its content without notice.

Printed in the United States of America

1 2 3 4 5 6 7 16 15 14 13 12

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Brief Contents

Preface xviii

CHAPTER 1 An Overview of Computers and Programming . 1

CHAPTER 2 Elements of High-Qual ity Programs 37

CHAPTER 3 Understanding Structure 83

CHAPTER 4 Making Decisions 121

CHAPTER 5 Looping 169

CHAPTER 6 Arrays 213

CHAPTER 7 Fi le Handl ing and Appl ications 257

CHAPTER 8 Advanced Data Handl ing Concepts 305

CHAPTER 9 Advanced Modularizat ion Techniques 355

CHAPTER 10 Object-Oriented Programming 407

CHAPTER 11 More Object-Oriented Programming
Concepts 449

CHAPTER 12 Event-Driven GUI Programming,
Mult ithreading, and Animation 491

CHAPTER 13 System Modeling with the UML 523

CHAPTER 14 Using Relat ional Databases 555

APPENDIX A Understanding Numbering Systems
and Computer Codes 601

APPENDIX B Flowchart Symbols 611

APPENDIX C Structures 612

APPENDIX D Solving Diff icult Structuring Problems 614

v

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

APPENDIX E Creating Print Charts 624

APPENDIX F Two Variat ions on the Basic
Structures—case and do-while . . . 626

Glossary 633

Index 653

B R I E F C ON T EN T S

vi

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents

Preface xviii

CHAPTER 1 An Overview of Computers and Programming . 1

Understanding Computer Systems 2
Understanding Simple Program Logic 5
Understanding the Program Development Cycle 7
Understanding the Problem 8
Planning the Logic . 9
Coding the Program . 10
Using Software to Translate the Program into Machine Language . 10
Testing the Program . 12
Putting the Program into Production 13
Maintaining the Program 13

Using Pseudocode Statements and Flowchart Symbols 14
Writing Pseudocode . 15
Drawing Flowcharts . 16
Repeating Instructions 17

Using a Sentinel Value to End a Program 19
Understanding Programming and User Environments 22
Understanding Programming Environments 22
Understanding User Environments 24

Understanding the Evolution of Programming Models 25
Chapter Summary . 27
Key Terms . 28
Review Questions . 31
Exercises . 33
Find the Bugs . 35
Game Zone . 35
Up for Discussion . 36

vii

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 2 Elements of High-Qual ity Programs 37

Declaring and Using Variables and Constants 38
Understanding Unnamed, Literal Constants and their

Data Types . 38
Working with Variables 39
Naming Variables . 41
Assigning Values to Variables 42
Understanding the Data Types of Variables 43
Declaring Named Constants 44

Performing Arithmetic Operations 45
Understanding the Advantages of Modularization 48
Modularization Provides Abstraction 49
Modularization Allows Multiple Programmers to

Work on a Problem 50
Modularization Allows You to Reuse Work 50

Modularizing a Program 51
Declaring Variables and Constants within Modules 55
Understanding the Most Common Configuration for Mainline Logic . 57

Creating Hierarchy Charts 61
Features of Good Program Design 63
Using Program Comments 64
Choosing Identifiers . 66
Designing Clear Statements 68
Writing Clear Prompts and Echoing Input 69
Maintaining Good Programming Habits 71

Chapter Summary . 72
Key Terms . 73
Review Questions . 76
Exercises . 79
Find the Bugs . 81
Game Zone . 82
Up for Discussion . 82

CHAPTER 3 Understanding Structure 83

The Disadvantages of Unstructured Spaghetti Code 84
Understanding the Three Basic Structures 86

viii

C O N T E N T S

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using a Priming Input to Structure a Program 95
Understanding the Reasons for Structure 101
Recognizing Structure 102
Structuring and Modularizing Unstructured Logic 105
Chapter Summary . 110
Key Terms . 111
Review Questions . 112
Exercises . 114
Find the Bugs . 118
Game Zone . 118
Up for Discussion . 119

CHAPTER 4 Making Decisions 121

Boolean Expressions and the Selection Structure 122
Using Relational Comparison Operators 126
Avoiding a Common Error with Relational Operators 129

Understanding AND Logic 129
Nesting AND Decisions for Efficiency 132
Using the AND Operator 134
Avoiding Common Errors in an AND Selection 136

Understanding OR Logic 138
Writing OR Decisions for Efficiency 140
Using the OR Operator 141
Avoiding Common Errors in an OR Selection 143

Making Selections within Ranges 148
Avoiding Common Errors When Using Range Checks 150

Understanding Precedence When Combining AND

and OR Operators . 154
Chapter Summary . 157
Key Terms . 158
Review Questions . 159
Exercises . 162
Find the Bugs . 167
Game Zone . 167
Up for Discussion . 168

ix

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 5 Looping 169

Understanding the Advantages of Looping 170
Using a Loop Control Variable 171
Using a Definite Loop with a Counter 172
Using an Indefinite Loop with a Sentinel Value 173
Understanding the Loop in a Program’s Mainline Logic 175

Nested Loops . 177
Avoiding Common Loop Mistakes 183
Mistake: Neglecting to Initialize the Loop Control Variable . . . 183
Mistake: Neglecting to Alter the Loop Control Variable 185
Mistake: Using the Wrong Comparison with the Loop Control

Variable . 186
Mistake: Including Statements Inside the Loop

that Belong Outside the Loop 187
Using a for Loop . 192
Common Loop Applications 194
Using a Loop to Accumulate Totals 194
Using a Loop to Validate Data 198
Limiting a Reprompting Loop 200
Validating a Data Type 202
Validating Reasonableness and Consistency of Data 203

Chapter Summary . 205
Key Terms . 205
Review Questions . 206
Exercises . 209
Find the Bugs . 211
Game Zone . 211
Up for Discussion . 212

CHAPTER 6 Arrays 213

Storing Data in Arrays 214
How Arrays Occupy Computer Memory 214

How an Array Can Replace Nested Decisions 216
Using Constants with Arrays 224
Using a Constant as the Size of an Array 224
Using Constants as Array Element Values 225
Using a Constant as an Array Subscript 225

x

C ON T E N T S

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Searching an Array for an Exact Match 226
Using Parallel Arrays . 230
Improving Search Efficiency 234

Searching an Array for a Range Match 237
Remaining within Array Bounds 241
Using a for Loop to Process Arrays 244
Chapter Summary . 245
Key Terms . 246
Review Questions . 246
Exercises . 249
Find the Bugs . 253
Game Zone . 253
Up for Discussion . 255

CHAPTER 7 Fi le Handl ing and Applicat ions 257

Understanding Computer Files 258
Organizing Files . 259

Understanding the Data Hierarchy 260
Performing File Operations 261
Declaring a File . 261
Opening a File . 262
Reading Data from a File 262
Writing Data to a File 264
Closing a File . 264
A Program that Performs File Operations 264

Understanding Sequential Files and Control Break Logic 267
Understanding Control Break Logic 268

Merging Sequential Files 273
Master and Transaction File Processing 281
Random Access Files 290
Chapter Summary . 292
Key Terms . 293
Review Questions . 295
Exercises . 299
Find the Bugs . 302
Game Zone . 302
Up for Discussion . 303

xi

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 8 Advanced Data Handl ing Concepts 305

Understanding the Need for Sorting Data 306
Using the Bubble Sort Algorithm 307
Understanding Swapping Values 308
Understanding the Bubble Sort 309
Sorting a List of Variable Size 318
Refining the Bubble Sort to Reduce Unnecessary

Comparisons . 322
Refining the Bubble Sort to Eliminate Unnecessary

Passes . 324
Sorting Multifield Records 326
Sorting Data Stored in Parallel Arrays 326
Sorting Records as a Whole 328

Using the Insertion Sort Algorithm 329
Using Multidimensional Arrays 333
Using Indexed Files and Linked Lists 340
Using Indexed Files 340
Using Linked Lists . 342

Chapter Summary . 345
Key Terms . 346
Review Questions . 347
Exercises . 350
Find the Bugs . 352
Game Zone . 353
Up for Discussion . 354

CHAPTER 9 Advanced Modularization Techniques 355

Using Methods with No Parameters 356
Creating Methods that Require Parameters 358
Creating Methods that Require Multiple Parameters 364

Creating Methods that Return a Value 366
Using an IPO Chart 372

Passing an Array to a Method 373
Overloading Methods 380
Avoiding Ambiguous Methods 383

Using Predefined Methods 386

xii

C O N T E N T S

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Method Design Issues: Implementation Hiding, Cohesion,
and Coupling . 388
Understanding Implementation Hiding 388
Increasing Cohesion 388
Reducing Coupling 389

Understanding Recursion 390
Chapter Summary . 395
Key Terms . 396
Review Questions . 397
Exercises . 400
Find the Bugs . 404
Game Zone . 404
Up for Discussion . 405

CHAPTER 10 Object-Oriented Programming 407

Principles of Object-Oriented Programming 408
Classes and Objects 408
Polymorphism . 412
Inheritance . 413
Encapsulation . 414

Defining Classes and Creating Class Diagrams 415
Creating Class Diagrams 417
The Set Methods . 420
The Get Methods . 421
Work Methods . 422

Understanding Public and Private Access 424
Organizing Classes . 428
Understanding Instance Methods 429
Understanding Static Methods 434
Using Objects . 436
Chapter Summary . 440
Key Terms . 440
Review Questions . 442
Exercises . 445
Find the Bugs . 447
Game Zone . 447
Up for Discussion . 447

xiii

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 11 More Object-Oriented Programming Concepts 449

Understanding Constructors 450
Default Constructors 450
Nondefault Constructors 453
Overloading Methods and Constructors 453

Understanding Destructors 456
Understanding Composition 458
Understanding Inheritance 459
Understanding Inheritance Terminology 462
Accessing Private Fields and Methods of a Parent Class . . . 465
Using Inheritance to Achieve Good Software Design 470

An Example of Using Predefined Classes: Creating GUI Objects . 472
Understanding Exception Handling 473
Drawbacks to Traditional Error-Handling Techniques 473
The Object-Oriented Exception-Handling Model 475
Using Built-in Exceptions and Creating Your Own Exceptions . . 477

Reviewing the Advantages of Object-Oriented Programming . . . 479
Chapter Summary . 479
Key Terms . 480
Review Questions . 482
Exercises . 485
Find the Bugs . 489
Game Zone . 489
Up for Discussion . 490

CHAPTER 12 Event-Driven GUI Programming,
Mult ithreading, and Animation 491

Understanding Event-Driven Programming 492
User-Initiated Actions and GUI Components 495
Designing Graphical User Interfaces 498
The Interface Should Be Natural and Predictable 498
The Interface Should Be Attractive, Easy to Read, and

Nondistracting . 499
To Some Extent, It’s Helpful If the User Can Customize Your

Applications . 500
The Program Should Be Forgiving 500
The GUI Is Only a Means to an End 500

xiv

C O N T E N T S

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Developing an Event-Driven Application 501
Creating Storyboards 502
Defining the Storyboard Objects in an Object Dictionary 502
Defining Connections Between the User Screens 503
Planning the Logic . 504

Understanding Threads and Multithreading 509
Creating Animation . 512
Chapter Summary . 515
Key Terms . 516
Review Questions . 517
Exercises . 520
Find the Bugs . 520
Game Zone . 521
Up for Discussion . 522

CHAPTER 13 System Modeling with the UML 523

Understanding System Modeling 524
What Is the UML? . 525
Using UML Use Case Diagrams 527
Using UML Class and Object Diagrams 533
Using Other UML Diagrams 537
Sequence Diagrams 537
Communication Diagrams 538
State Machine Diagrams 539
Activity Diagrams . 540
Component and Deployment Diagrams 542
Profile Diagrams . 544
Diagramming Exception Handling 544

Deciding When to Use the UML and Which UML Diagrams to Use . 546
Chapter Summary . 547
Key Terms . 548
Review Questions . 549
Exercises . 552
Find the Bugs . 553
Game Zone . 553
Up for Discussion . 554

xv

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 14 Using Relat ional Databases 555

Understanding Relational Database Fundamentals 556
Creating Databases and Table Descriptions 558
Identifying Primary Keys 560
Understanding Database Structure Notation 563
Working with Records within Tables 564
Creating Queries . 565
Understanding Relationships between Tables 568
Understanding One-To-Many Relationships 569
Understanding Many-To-Many Relationships 569
Understanding One-To-One Relationships 573

Recognizing Poor Table Design 574
Understanding Anomalies, Normal Forms, and Normalization . . 576
First Normal Form . 578
Second Normal Form 579
Third Normal Form 582

Database Performance and Security Issues 585
Providing Data Integrity 585
Recovering Lost Data 586
Avoiding Concurrent Update Problems 586
Providing Authentication and Permissions 586
Providing Encryption 587

Chapter Summary . 587
Key Terms . 589
Review Questions . 591
Exercises . 594
Find the Bugs . 598
Game Zone . 598
Up for Discussion . 598

APPENDIX A Understanding Numbering Systems
and Computer Codes 601

APPENDIX B Flowchart Symbols 611

APPENDIX C Structures 612

xvi

C O N T E N T S

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

APPENDIX D Solving Diff icult Structuring Problems 614

APPENDIX E Creating Print Charts 624

APPENDIX F Two Variat ions on the Basic Structures—case
and do-while 626

Glossary 633

Index . 653

xvii

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface

Programming Logic and Design, Comprehensive, Seventh Edition provides the beginning
programmer with a guide to developing structured program logic. This textbook assumes no
programming language experience. The writing is nontechnical and emphasizes good
programming practices. The examples are business examples; they do not assume
mathematical background beyond high school business math. Additionally, the examples
illustrate one or two major points; they do not contain so many features that students become
lost following irrelevant and extraneous details.

The examples in this book have been created to provide students with a sound background in
logic, no matter what programming languages they eventually use to write programs. This
book can be used in a stand-alone logic course that students take as a prerequisite to a
programming course, or as a companion book to an introductory programming text using
any programming language.

Organization and Coverage
Programming Logic and Design, Comprehensive, Seventh Edition introduces students to
programming concepts and enforces good style and logical thinking. General programming
concepts are introduced in Chapter 1. Chapter 2 discusses using data and introduces two
important concepts: modularization and creating high-quality programs. It is important to
emphasize these topics early so that students start thinking in a modular way and concentrate
on making their programs efficient, robust, easy to read, and easy to maintain.

Chapter 3 covers the key concepts of structure, including what structure is, how to recognize
it, and most importantly, the advantages to writing structured programs. This chapter’s
content is unique among programming texts. The early overview of structure presented here
gives students a solid foundation in thinking in a structured way.

Chapters 4, 5, and 6 explore the intricacies of decision making, looping, and array
manipulation. Chapter 7 provides details of file handling so students can create programs that
process a significant amount of data.

In Chapters 8 and 9, students learn more advanced techniques in array manipulation and
modularization. Chapters 10 and 11 provide a thorough yet accessible introduction to
concepts and terminology used in object-oriented programming. Students learn about
classes, objects, instance and static class members, constructors, destructors, inheritance, and
the advantages of object-oriented thinking.

xviii

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 explores additional object-oriented programming issues: event-driven GUI
programming, multithreading, and animation. Chapter 13 discusses system design issues and
details the features of the Unified Modeling Language. Chapter 14 is a thorough introduction
to important database concepts that business programmers should understand.

The first three appendices give students summaries of numbering systems, flowchart
symbols, and structures. Additional appendices allow students to gain extra experience with
structuring large unstructured programs, creating print charts, and understanding posttest
loops and case structures.

Programming Logic and Design combines text explanation with flowcharts and pseudocode
examples to provide students with alternative means of expressing structured logic.
Numerous detailed, full-program exercises at the end of each chapter illustrate the concepts
explained within the chapter, and reinforce understanding and retention of the material
presented.

Programming Logic and Design distinguishes itself from other programming logic books in
the following ways:

l It is written and designed to be non-language specific. The logic used in this book can be
applied to any programming language.

l The examples are everyday business examples; no special knowledge of mathematics,
accounting, or other disciplines is assumed.

l The concept of structure is covered earlier than in many other texts. Students are
exposed to structure naturally, so they will automatically create properly designed
programs.

l Text explanation is interspersed with both flowcharts and pseudocode so students can
become comfortable with these logic development tools and understand their
interrelationship. Screen shots of running programs also are included, providing students
with a clear and concrete image of the programs’ execution.

l Complex programs are built through the use of complete business examples. Students see
how an application is constructed from start to finish instead of studying only segments of
programs.

Organization and Coverage

xix

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Features
This text focuses on helping students become better programmers and
understand the big picture in program development through a variety of
key features. In addition to chapter Objectives, Summaries, and Key Terms,
these useful features will help students regardless of their learning style.

The use of flowcharts is excellent. This is a must-have
book for learning programming logic before tackling
the various languages.

—Lori Selby, University of Arkansas at Monticello

FLOWCHARTS, figures,
and illustrations provide

learning experience.
the reader with a visual

VIDEO LESSONS help
explain important chapter
concepts. Videos are part
of the text’s enhanced
CourseMate site.

NOTES provide
additional information—
for example, another
location in the book that
expands on a topic, or a
common error to watch
out for.

xx

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE mini quizzes
appear after each chapter section, with
answers provided. The quiz contains
three statements based on the preceding
section of text—two statements are
true and one is false. Answers give
immediate feedback without “giving away”
answers to the multiple-choice questions
and programming problems later in
the chapter. Students also have the option
to take these quizzes electronically
through the enhanced CourseMate site.

THE DON’T DO IT ICON illustrates
how NOT to do something—for
example, having a dead code
path in a program. This icon
provides a visual jolt to the student,

are NOT to be emulated and making
students more careful to recognize
problems in existing code.

xxi

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Assessment

The material is very well written, clearly
presented, and up to date. All explanations
are very solid, and Farrell’s language is clean,
cogent, and easy to follow.

—Judy Woodruff, Indiana
University-Purdue University Indianapolis

EXERCISES provide opportunities to
practice concepts. These exercises

to explore logical programming
concepts. Each exercise can

pseudocode, or both. In addition,
instructors can assign the exercises as
programming problems to be coded and
executed in a particular programming
language.

REVIEW QUESTIONS test
student comprehension of the
major ideas and techniques
presented. Twenty questions
follow each chapter.

xxii

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

DEBUGGING EXERCISES are
included with each chapter because
examining programs critically and
closely is a crucial programming skill.
Students can download these exercises
at www.cengagebrain.com and through
the CourseMate available for this text.
These files are also available to
instructors through the Instructor
Resources CD and login.cengage.com.

GAME ZONE EXERCISES are included
at the end of each chapter. Students can
create games as an additional entertaining
way to understand key programming
concepts.

ESSAY QUESTIONS present
personal and ethical issues that
programmers must consider. These
questions can be used for written
assignments or as a starting point
for classroom discussion.

xxiii

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Other Features of the Text
This edition of the text includes many features to help students become better
programmers and understand the big picture in program development. In this edition, all
explanations have been carefully reviewed to provide the clearest possible instruction.
Material that previously was included in margin notes has most frequently been
incorporated into the main text, giving the pages a more streamlined appearance. All the
chapters in this edition contain new programming exercises. All Sixth Edition exercises
that have been replaced are available on the Instructor Resources CD and through login.
cengage.com so instructors can use them as additional assigned exercises or as topics for
class discussions.

l Clear explanations. The language and explanations in this book have been
refined over seven editions, providing the clearest possible explanations of difficult
concepts.

l Emphasis on structure. More than its competitors, this book emphasizes structure.
Chapter 3 provides an early picture of the major concepts of structured programming,
giving students an overview of the principles before they are required to consider program
details.

l Emphasis on modularity. From the second chapter, students are encouraged to write
code in concise, easily manageable, and reusable modules. Instructors have found that
modularization should be encouraged early to instill good habits and a clearer
understanding of structure. This edition uses modularization early, using global variables
instead of local passed and returned values, and saves parameter passing for later when
the student has become more adept.

l Methods as black boxes. The use of methods is consistent with the languages in which
the student is likely to have first programming experiences. In particular, this book
emphasizes using methods as black boxes, declaring all variables and constants as local to
methods, and passing arguments to and receiving returned values from methods as
needed.

l Objectives. Each chapter begins with a list of objectives so the student knows the topics
that will be presented in the chapter. In addition to providing a quick reference to topics
covered, this feature provides a useful study aid.

l Pseudocode. This book includes numerous examples of pseudocode, which illustrate
correct usage of the programming logic and design concepts being taught.

l Chapter summaries. Following each chapter is a summary that recaps the
programming concepts and techniques covered in the chapter. This feature provides a
concise means for students to review and check their understanding of the main points
in each chapter.

l Key terms. Each chapter lists key terms and their definitions; the list appears in the
order the terms are encountered in the chapter. Along with the chapter summary, the

xxiv

P R E F A C E Other Features of the Text

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

list of key terms provides a snapshot overview of a chapter’s main ideas. A glossary at
the end of the book lists all the key terms in alphabetical order, along with working
definitions.

CourseMate
The more you study, the better the results. Make the most of your study time by accessing
everything you need to succeed in one place. Read your textbook, review flashcards, watch
videos, and take practice quizzes online. CourseMate goes beyond the book to deliver what
you need! Learn more at www.cengage.com/coursemate.

The Programming Logic and Design CourseMate includes:

l Video Lessons. Designed and narrated by the author, videos in each chapter explain and
enrich important concepts.

l Two Truths & A Lie and Debugging Exercises. Complete popular exercises from the
text online!

l An interactive eBook with highlighting and note-taking, flashcards, quizzing, study games,
and more!

Instructors may add CourseMate to the textbook package, or students may purchase
CourseMate directly at www.cengagebrain.com.

Instructor Resources
The following teaching tools are available to the instructor on a single CD-ROM. Many are
also available for download through our Instructor Companion Site at login.cengage.com.

l Electronic Instructor’s Manual. The Instructor’s Manual follows the text chapter
by chapter to assist in planning and organizing an effective, engaging course. The
manual includes learning objectives, chapter overviews, lecture notes, ideas for
classroom activities, and abundant additional resources. A sample course syllabus is
also available.

l PowerPoint Presentations. This text provides PowerPoint slides to accompany each
chapter. Slides are included to guide classroom presentation, to make available to
students for chapter review, or to print as classroom handouts. Instructors may
customize the slides, which include the complete figure files from the text, to best
suit their courses.

l Solutions. Solutions to review questions and exercises are provided to assist with
grading.

xxv

Instructor Resources

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l ExamView�. This textbook is accompanied by ExamView, a powerful testing software
package that allows instructors to create and administer printed, LAN-based, and Internet
exams. ExamView includes hundreds of questions that correspond to the text, enabling
students to generate detailed study guides that include page references for further review.
The computer-based and Internet testing components allow students to take exams at
their computers, and the components save the instructor time by grading each exam
automatically. These test banks are also available in Blackboard and Angel compatible
formats.

Additional Offerings
You have the option to bundle software with your text. Please contact your Cengage Learning
sales representative for more information.

l PAL Guides. Together with Programming Logic and Design, these brief books, or
PAL guides, provide an excellent opportunity to learn the fundamentals of programming
while gaining exposure to a programming language. Readers will discover how real code
behaves within the context of the traditionally language-independent logic and design
course. PAL guides are available for C++, Java, and Visual Basic; please contact your sales
rep for more information on how to add the PAL guides to your course.

l Microsoft� Office Visio� Professional 2010, 60-day version. Visio 2010 is a
diagramming program that allows users to create flowcharts and diagrams easily
while working through the text, enabling them to visualize concepts and learn more
effectively.

l Visual LogicTM software. Visual Logic is a simple but powerful tool for teaching
programming logic and design without traditional high-level programming language
syntax. Visual Logic uses flowcharts to explain the essential programming concepts
discussed in this book, including variables, input, assignment, output, conditions,
loops, procedures, graphics, arrays, and files. Visual Logic also interprets and
executes flowcharts, providing students with immediate and accurate feedback. Visual
Logic combines the power of a high-level language with the ease and simplicity of
flowcharts.

Acknowledgments
I would like to thank all of the people who helped to make this book a reality, especially
Dan Seiter, Development Editor. After seven editions, Dan still finds ways to improve my
explanations so that we can create a book of the highest possible quality. Thanks also to
Alyssa Pratt, Senior Product Manager; Brandi Shailer, Acquisitions Editor; Catherine DiMassa,
Senior Content Project Manager; and Green Pen QA, Technical Editors. I am grateful to be able
to work with so many fine people who are dedicated to producing quality instructional
materials.

xxvi

P R E F A C E Acknowledgments

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I am indebted to the many reviewers who provided helpful and insightful comments during
the development of this book, including Linda Cohen, Forsyth Tech; Andrew Hurd, Hudson
Valley Community College; George Reynolds, Strayer University; Lori Selby, University of
Arkansas at Monticello; and Judy Woodruff, Indiana University–Purdue University
Indianapolis.

Thanks, too, to my husband, Geoff, and our daughters, Andrea and Audrey, for their support.
This book, as were all its previous editions, is dedicated to them.

–Joyce Farrell

xxvii

Acknowledgments

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 1
An Overview
of Computers
and Programming

In this chapter, you will learn about:

Computer systems

Simple program logic

The steps involved in the program development cycle

Pseudocode statements and flowchart symbols

Using a sentinel value to end a program

Programming and user environments

The evolution of programming models

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Computer Systems
A computer system is a combination of all the components required to process and store
data using a computer. Every computer system is composed of multiple pieces of hardware
and software.

l Hardware is the equipment, or the physical devices, associated with a computer. For
example, keyboards, mice, speakers, and printers are all hardware. The devices are
manufactured differently for large mainframe computers, laptops, and even smaller
computers that are embedded into products such as cars and thermostats, but the types of
operations performed by different-sized computers are very similar. When you think of a
computer, you often think of its physical components first, but for a computer to be
useful, it needs more than devices; a computer needs to be given instructions. Just as your
stereo equipment does not do much until you provide music, computer hardware needs
instructions that control how and when data items are input, how they are processed, and
the form in which they are output or stored.

l Software is computer instructions that tell the hardware what to do. Software is
programs, which are instruction sets written by programmers. You can buy prewritten
programs that are stored on a disk or that you download from the Web. For example,
businesses use word-processing and accounting programs, and casual computer users
enjoy programs that play music and games. Alternatively, you can write your own
programs. When you write software instructions, you are programming. This book
focuses on the programming process.

Software can be classified into two broad types:

l Application software comprises all the programs you apply to a task, such as word-
processing programs, spreadsheets, payroll and inventory programs, and even games.

l System software comprises the programs that you use to manage your computer,
including operating systems such as Windows, Linux, or UNIX.

This book focuses on the logic used to write application software programs, although many of
the concepts apply to both types of software.

Together, computer hardware and software accomplish three major operations in most
programs:

l Input—Data items enter the computer system and are placed in memory, where they can
be processed. Hardware devices that perform input operations include keyboards and
mice. Data items include all the text, numbers, and other raw material that are entered
into and processed by a computer. In business, many of the data items used are facts and
figures about such entities as products, customers, and personnel. However, data can also
include items such as images, sounds, and a user’s mouse movements.

l Processing—Processing data items may involve organizing or sorting them, checking
them for accuracy, or performing calculations with them. The hardware component that
performs these types of tasks is the central processing unit, or CPU.

2

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l Output—After data items have been processed, the resulting information usually is sent to
a printer, monitor, or some other output device so people can view, interpret, and use the
results. Programming professionals often use the term data for input items, but use the
term information for data that has been processed and output. Sometimes you place
output on storage devices, such as disks or flash media. People cannot read data directly
from these storage devices, but the devices hold information for later retrieval. When you
send output to a storage device, sometimes it is used later as input for another program.

You write computer instructions in a computer programming language such as Visual Basic,
C#, C++, or Java. Just as some people speak English and others speak Japanese, programmers
write programs in different languages. Some programmers work exclusively in one language,
whereas others know several and use the one that is best suited to the task at hand.

The instructions you write using a programming language are called program code; when
you write instructions, you are coding the program.

Every programming language has rules governing its word usage and punctuation. These
rules are called the language’s syntax. Mistakes in a language’s usage are syntax errors. If you
ask, “How the geet too store do I?” in English, most people can figure out what you probably
mean, even though you have not used proper English syntax—you have mixed up the word
order, misspelled a word, and used an incorrect word. However, computers are not nearly as
smart as most people; in this case, you might as well have asked the computer, “Xpu mxv ort
dod nmcad bf B?” Unless the syntax is perfect, the computer cannot interpret the
programming language instruction at all.

When you write a program, you usually type its instructions using a keyboard. When you type
program instructions, they are stored in computer memory, which is a computer’s
temporary, internal storage. Random access memory, or RAM, is a form of internal, volatile
memory. Programs that are currently running and data items that are currently being used
are stored in RAM for quick access. Internal storage is volatile—its contents are lost when the
computer is turned off or loses power. Usually, you want to be able to retrieve and perhaps
modify the stored instructions later, so you also store them on a permanent storage device,
such as a disk. Permanent storage devices are nonvolatile—that is, their contents are
persistent and are retained even when power is lost. If you have had a power loss while
working on a computer, but were able to recover your work when power was restored, it’s not
because the work was still in RAM. Your system has been configured to automatically save
your work at regular intervals on a nonvolatile storage device.

After a computer program is typed using programming language statements and stored in
memory, it must be translated to machine language that represents the millions of on/off
circuits within the computer. Your programming language statements are called source
code, and the translated machine language statements are object code.

Each programming language uses a piece of software, called a compiler or an interpreter, to
translate your source code into machine language. Machine language is also called binary
language, and is represented as a series of 0s and 1s. The compiler or interpreter that
translates your code tells you if any programming language component has been used
incorrectly. Syntax errors are relatively easy to locate and correct because your compiler or
interpreter highlights them. If you write a computer program using a language such as C++

3

Understanding Computer Systems

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

but spell one of its words incorrectly or reverse the proper order of two words, the software
lets you know that it found a mistake by displaying an error message as soon as you try to
translate the program.

Although there are differences in how compilers and interpreters work, their basic function is the same—to
translate your programming statements into code the computer can use. When you use a compiler, an entire
program is translated before it can execute; when you use an interpreter, each instruction is translated just
prior to execution. Usually, you do not choose which type of translation to use—it depends on the
programming language. However, there are some languages for which both compilers and interpreters are
available.

After a program’s source code is successfully translated to machine language, the computer
can carry out the program instructions. When instructions are carried out, a program runs,
or executes. In a typical program, some input will be accepted, some processing will occur,
and results will be output.

Besides the popular, comprehensive programming languages such as Java and C++, many programmers
use scripting languages (also called scripting programming languages or script languages) such as
Python, Lua, Perl, and PHP. Scripts written in these languages usually can be typed directly from a keyboard
and are stored as text rather than as binary executable files. Scripting language programs are interpreted
line by line each time the program executes, instead of being stored in a compiled (binary) form. Still, with all
programming languages, each instruction must be translated to machine language before it can execute.

TWO TRUTHS & A LIE

Understanding Computer Systems

In each Two Truths and a Lie section, two of the numbered statements are true, and one
is false. Identify the false statement and explain why it is false.

1. Hardware is the equipment, or the devices, associated with a computer.
Software is computer instructions.

2. The grammar rules of a computer programming language are its syntax.

3. You write programs using machine language, and translation software converts
the statements to a programming language.

. s1 dna s0 si hci h w, egaugnal eni hca mot st ne met at s eht str evnoc
)r et er pr et ni r or eli p moc a dell ac(mar gor p noi t al snart a dna, avaJ r o ci saBl ausi V sa
hcus egaugnal gni mmar gor p a gni su s mar gor p eti r wuoY. 3# si t ne met at s esl af ehT

4

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Simple Program Logic
A program with syntax errors cannot be fully translated and cannot execute. A program with
no syntax errors is translatable and can execute, but it still might contain logical errors and
produce incorrect output as a result. For a program to work properly, you must develop
correct logic; that is, you must write program instructions in a specific sequence, you must
not leave any instructions out, and you must not add extraneous instructions.

Suppose you instruct someone to
make a cake as follows:

Get a bowl
Stir
Add two eggs
Add a gallon of gasoline
Bake at 350 degrees for 45 minutes
Add three cups of flour

The dangerous cake-baking instructions are shown with a Don’t Do It icon. You will see this icon when the
book contains an unrecommended programming practice that is used as an example of what not to do.

Even though the cake-baking instructions use English language syntax correctly, the
instructions are out of sequence, some are missing, and some instructions belong to
procedures other than baking a cake. If you follow these instructions, you will not make an
edible cake, and you may end up with a disaster. Many logical errors are more difficult to
locate than syntax errors—it is easier for you to determine whether eggs is spelled incorrectly
in a recipe than it is for you to tell if there are too many eggs or if they are added too soon.

Just as baking directions can be provided in Mandarin, Urdu, or Spanish, program logic can
be expressed correctly in any number of programming languages. Because this book is not
concerned with a specific language, the programming examples could have been written in
Visual Basic, C++, or Java. For convenience, this book uses instructions written in English!

After you learn French, you automatically know, or can easily figure out, many Spanish words. Similarly, after
you learn one programming language, it is much easier to understand several other languages.

Most simple computer programs include steps that perform input, processing, and output.
Suppose you want to write a computer program to double any number you provide. You can
write the program in a programming language such as Visual Basic or Java, but if you were to
write it using English-like statements, it would look like this:

input myNumber
set myAnswer = myNumber * 2
output myAnswer

Don’t Do It
Don't bake a cake like
this!

5

Understanding Simple Program Logic

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The number-doubling process includes three instructions:

l The instruction to input myNumber is an example of an input operation. When the
computer interprets this instruction, it knows to look to an input device to obtain a
number. When you work in a specific programming language, you write instructions that
tell the computer which device to access for input. For example, when a user enters a
number as data for a program, the user might click on the number with a mouse, type it
from a keyboard, or speak it into a microphone. Logically, however, it doesn’t matter
which hardware device is used, as long as the computer knows to accept a number. When
the number is retrieved from an input device, it is placed in the computer’s memory in a
variable named myNumber. A variable is a named memory location whose value can vary—
for example, the value of myNumber might be 3 when the program is used for the first time
and 45 when it is used the next time. In this book, variable names will not contain
embedded spaces; for example, the book will use myNumber instead of my Number.

From a logical perspective, when you input, process, or output a value, the hardware device is irrelevant. The
same is true in your daily life. If you follow the instruction “Get eggs for the cake,” it does not really matter if
you purchase them from a store or harvest them from your own chickens—you get the eggs either way.
There might be different practical considerations to getting the eggs, just as there are for getting data from
a large database as opposed to getting data from an inexperienced user working at home on a laptop
computer. For now, this book is only concerned with the logic of operations, not the minor details.

l The instruction set myAnswer = myNumber * 2 is an example of a processing operation.
In most programming languages, an asterisk is used to indicate multiplication, so this
instruction means “Change the value of the memory location myAnswer to equal the value
at the memory location myNumber times two.” Mathematical operations are not the only
kind of processing operations, but they are very typical. As with input operations, the type
of hardware used for processing is irrelevant—after you write a program, it can be used on
computers of different brand names, sizes, and speeds.

l In the number-doubling program, the output myAnswer instruction is an example of an
output operation. Within a particular program, this statement could cause the output to
appear on the monitor (which might be a flat-panel plasma screen or a cathode-ray tube),
or the output could go to a printer (which could be laser or ink-jet), or the output could
be written to a disk or DVD. The logic of the output process is the same no matter what
hardware device you use. When this instruction executes, the value stored in memory at
the location named myAnswer is sent to an output device. (The output value also remains
in computer memory until something else is stored at the same memory location or
power is lost.)

Watch the video A Simple Program.

6

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Computer memory consists of millions of numbered locations where data can be stored. The memory
location of myNumber has a specific numeric address, but when you write programs, you seldom need to
be concerned with the value of the memory address; instead, you use the easy-to-remember name you
created. Computer programmers often refer to memory addresses using hexadecimal notation, or base 16.
Using this system, they might use a value like 42FF01A to refer to a memory address. Despite the use of
letters, such an address is still a hexadecimal number. Appendix A contains information on this numbering
system.

TWO TRUTHS & A LIE

Understanding Simple Program Logic

1. A program with syntax errors can execute but might produce incorrect results.

2. Although the syntax of programming languages differs, the same program logic
can be expressed in different languages.

3. Most simple computer programs include steps that perform input, processing,
and output.

. stl user t cerr ocni ecudor pt hgi mt ub, et ucexe nac sr orr e xat nys on hti w
mar gor p a; et ucexet onnac sr orr e xat nys hti w mar gor p A. 1# si t ne met at s esl af ehT

Understanding the Program Development Cycle
A programmer’s job involves writing instructions (such as those in the doubling program in
the preceding section), but a professional programmer usually does not just sit down at a
computer keyboard and start typing. Figure 1-1 illustrates the program development cycle,
which can be broken down into at least seven steps:

1. Understand the problem.

2. Plan the logic.

3. Code the program.

4. Use software (a compiler or interpreter) to translate the program into machine
language.

5. Test the program.

6. Put the program into production.

7. Maintain the program.

7

Understanding the Program Development Cycle

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding the Problem
Professional computer programmers write programs to satisfy the needs of others, called
users or end users. Examples of end users include a Human Resources department that
needs a printed list of all employees, a Billing department that wants a list of clients who are
30 or more days overdue on their payments, and an Order department that needs a Web site
to provide buyers with an online shopping cart. Because programmers are providing a service
to these users, programmers must first understand what the users want. When a program
runs, you usually think of the logic as a cycle of input-processing-output operations, but when
you plan a program, you think of the output first. After you understand what the desired
result is, you can plan the input and processing steps to achieve it.

Suppose the director of Human Resources says to a programmer, “Our department needs a
list of all employees who have been here over five years, because we want to invite them to a
special thank-you dinner.” On the surface, this seems like a simple request. An experienced
programmer, however, will know that the request is incomplete. For example, you might not
know the answers to the following questions about which employees to include:

l Does the director want a list of full-time employees only, or a list of full- and part-time
employees together?

l Does she want to include people who have worked for the company on a month-to-
month contractual basis over the past five years, or only regular, permanent employees?

l Do the listed employees need to have worked for the organization for five years as of
today, as of the date of the dinner, or as of some other cutoff date?

l What about an employee who worked three years, took a two-year leave of absence, and
has been back for three years?

Understand
the problem

Test the
program

Put the program
into production

Maintain the
program

Plan the
logic

Translate the
code

Write the
code

Figure 1-1 The program development cycle

8

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The programmer cannot make any of these decisions; the user (in this case, the Human
Resources director) must address these questions.

More decisions still might be required. For example:

l What data should be included for each listed employee? Should the list contain both first
and last names? Social Security numbers? Phone numbers? Addresses?

l Should the list be in alphabetical order? Employee ID number order? Length-of-service
order? Some other order?

l Should the employees be grouped by any criteria, such as department number or years of
service?

Several pieces of documentation are often provided to help the programmer understand the
problem. Documentation consists of all the supporting paperwork for a program; it might
include items such as original requests for the program from users, sample output, and
descriptions of the data items available for input.

Fully understanding the problem may be one of the most difficult aspects of programming.
On any job, the description of what the user needs may be vague—worse yet, users may not
really know what they want, and users who think they know frequently change their minds
after seeing sample output. A good programmer is often part counselor, part detective!

Watch the video The Program Development Cycle, Part 1.

Planning the Logic
The heart of the programming process lies in planning the program’s logic. During this phase
of the process, the programmer plans the steps of the program, deciding what steps to include
and how to order them. You can plan the solution to a problem in many ways. The two most
common planning tools are flowcharts and pseudocode. Both tools involve writing the steps
of the program in English, much as you would plan a trip on paper before getting into the car
or plan a party theme before shopping for food and favors.

You may hear programmers refer to planning a program as “developing an algorithm.” An
algorithm is the sequence of steps necessary to solve any problem.

In addition to flowcharts and pseudocode, programmers use a variety of other tools to help in program
development. One such tool is an IPO chart, which delineates input, processing, and output tasks. Some
object-oriented programmers also use TOE charts, which list tasks, objects, and events.

The programmer shouldn’t worry about the syntax of any particular language during the
planning stage, but should focus on figuring out what sequence of events will lead from the
available input to the desired output. Planning the logic includes thinking carefully about all

9

Understanding the Program Development Cycle

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

